RESEARCH MEMORANDUM EFFECTS OF MODIFICATIONS TO A CONTROL SURFACE ON A 6-PERCENT-THICK UNSWEPT WING ON THE TRANSONIC CONTROL-SURFACE FLUTTER DERIVATIVES By John A. Wyss, Robert M. Sorenson, and Bruno J. Gambucci Ames Aeronautical Laboratory Moffett Field, Calif SCLASSIFIED - AUTHORITY DROBKA TO LEBOY MEMO DATED 6/8/66 Declassified by authority of NASA WASHINGTON May 2, 1958 Microfichio (MF) NACA RM A58B04 NACA RM A58B04 ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # RESEARCH MEMORANDUM EFFECTS OF MODIFICATIONS TO A CONTROL SURFACE ON A 6-PERCENT-THICK UNSWEPT WING ON THE TRANSONIC CONTROL-SURFACE FLUTTER DERIVATIVES By John A. Wyss, Robert M. Sorenson, and Bruno J. Gambucci SUMMARY 33343 Transonic flutter derivatives were determined from pressure cell measurements on control surfaces sinusoidally oscillated at an amplitude of $\pm 1.08^{\circ}$ at frequencies from 5 to 30 cycles per second. The control surfaces were mounted on a wing having an aspect ratio of 3, a taper ratio of 0.6, and a wing-thickness ratio of 0.06. Various control-surface configurations were investigated which included internal and external aerodynamic balance, vortex generators on the wing, a splitter-plate type of control surface, and superposition of triangular shaped wedges or tetrahedra along the rear portion of the control-surface chord. For all variations of the 30-percent-chord flap the aerodynamic damping component became unstable at about 0.95 Mach number after the shock position had moved back onto the control surface. A splitter-plate configuration reduced the magnitude of instability by a factor of about three. Instability was reduced or eliminated at subsonic Mach numbers by the addition of the triangular wedges on a 21.5-percent-chord control surface. ## INTRODUCTION Single-degree-of-freedom control-surface flutter was encountered as soon as aircraft were able to enter the transonic speed regime. Early research indicated the formation of strong shock waves on the relatively thick wing ahead of the control surface so that the mechanism for flutter was associated with a time lag between control-surface and shock-wave motion. Solution to this problem was either the addition of nonaerodynamic damping in the control system or recourse to an irreversible control system with apparently inevitable weight penalties (refs. 1 to 3). Reduction in wing thickness to as little as 4 percent of the wing chord, which has improved wing drag and buffeting characteristics, has not eliminated control-surface flutter. Recent experimental studies at low Reynolds number have indicated the possibility that control-surface flutter at transonic speeds can be dependent on potential-flow effects (ref. 4). However, results presented in reference 5 indicated that the improvements in aerodynamic damping characteristics, predicted by potential-flow wing theory for substantial amounts of aerodynamic balance, were not realized. Profile modifications were investigated in reference 6 and a control surface with a wedge profile (blunt trailing edge) gave significant improvements in control-surface stability for oscillation amplitudes less than about 3°. Full-scale flight research has given qualitative indications of improved control-surface flutter stability for two control modifications which are different from those in reference 6. North American Aviation tests have indicated improved characteristics for a trailing-edge splitter plate combined with a slight thickening of the forward portion of the control (ref. 7). Unpublished results from the Ames Flight Research Branch have indicated that the superposition of wedges, which were triangular in plan form as well as profile, on the control surfaces of an F80 airplane was an effective fix for control-surface flutter up to the top flight speed of 0.88 Mach number. The use of such wedges on a wing surface for the delay of turbulent flow separation has been reported in reference 8. In the present investigation, flutter derivatives were measured for 13 control-surface configurations, along with studies of flow field by means of high-speed motion-picture shadowgraphs. Geometric parameters investigated included the external aerodynamic balance, a sealed nose, vortex generators ahead of a control surface, a systematic variation of a splitter-plate type of airfoil, and triangular plan-form wedges superimposed on control surfaces. Some data were obtained which indicated the effects of changing the mean angle of deflection of the control surface and the angle of attack of the wing. All control-surface flutter derivatives were obtained at an amplitude of ±1.08°, so that comparisons could be made at an identical amplitude of oscillation. ## SYMBOLS - b local wing semichord, ft - c_b balance chord (distance from hinge line to leading edge of control), ft - cf control chord (distance from hinge line to trailing edge), ft NACA RM A58B04 $$c_h$$ control hinge-moment coefficient, $\frac{HM}{\frac{1}{2} \rho V^2 c_t^2}$ $$c_{h_{\delta}} = \frac{\partial c_{h}}{\partial \delta}$$, per radian $$c_{h_{\tilde{0}}}$$ aerodynamic damping-moment coefficient, $\frac{\partial c_{h}}{\partial \left(\frac{\delta b}{V}\right)}$ cs splitter-plate portion of control chord, ft ct total-control chord, cb + cf, ft f frequency, cps HM hinge moment per foot of span k reduced frequency, $\frac{\omega b}{V}$, with b taken at 3/8 semispan M Mach number, V speed of sound V velocity of air stream, ft/sec α angle of attack, deg δ control-surface deflection angle, radians except where noted δ control-surface angular velocity, $\frac{d\delta}{dt}$, radians/sec θ phase angle of resultant aerodynamic moment with respect to control displacement, deg ρ density of air stream, $\frac{1b-\sec^2}{ft^4}$ ω angular frequency, $2\pi f$, radians/sec Subscript m mean angle, deg ## Vector Notation ## APPARATUS ## Tunnel The investigation was performed in the Ames 14-foot transonic wind tunnel. A sectional sketch of the nozzle and test section is shown in figure 1. The flexible walls ahead of the perforated test section are controlled to produce the convergent-divergent nozzle required to generate supersonic Mach numbers up to 1.20. The perforated walls have the function of preventing tunnel choking and absorbing shock waves generated by the model, thus minimizing shock-wave reflection. The air circuit is closed except at an air exchanger which is controlled to maintain desired air temperature. The tunnel is operated at atmospheric pressure and a stagnation temperature of about 180° F. At this temperature the Reynolds number varies from 2.6 to 3.7 million per foot of chord for Mach numbers from 0.6 to 1.20. ## Model The model, which is shown in figure 2, is mounted on a base plate which, in turn, is bolted to the tunnel floor. Model plan-form dimensions are shown in figure 3. The basic model is a wing with an aspect ratio of 3, a 6-foot semispan, a taper ratio of 0.6, an unswept 70-percent-chord line, and a midspan control surface. The wing had an NACA 65A006 profile which was modified to a blunt trailing edge of 0.2-inch thickness. This modification facilitated pressure-cell installation at the trailing edge. Chordwise rows of pressure cells and pressure orifices were installed at 3/8 and 5/8 of the semispan. In order to provide additional stiffness and damping, a 5/32-inch aircraft cable was passed through the plastic wing tip, sweptback about 20°, and counterweighted through a locked pulley system by 1000 pound loads outside of the wind tunnel. The increased stiffness due to the cable raised the fundamental resonant frequency of the model from 20 to about 33 cps. A frequency response curve of the model with the cable is shown in figure 4. On the basis of this curve and observed vibrations during the tests, it was found that the control surface could be oscillated safely up to 30 cps with negligible coupling between the control surface and the wing. ## Control Surfaces The various control-surface profiles which were used in this investigation are shown in figure 5. These variations were obtained by modifications to three basic control surfaces. The first control surface had a 30-percent total chord to wing chord ratio. The nose portion of the control surface was derived from an NACA 2-006 profile. The three hinge lines used resulted in balance chord to flap chord ratios, c_b/c_f , of 0.10, 0.25, and 0.40, which are based on mean aerodynamic chord of the flap. Each hinge line was perpendicular to the wind stream. This control surface was also tested with the leading edge sealed with a strip of canvas for both the forward and rearward hinge-line locations, cb/cf equal to 0.10 and 0.40, respectively. The second control surface had a shorter chord with its hinge line corresponding to the rear hinge line of the other control surfaces. It had a flap chord to wing chord ratio of 21.5 percent at midspan, a radius leading edge, flat surfaces, and an unsealed 1/16-inch nose gap. Since this control surface had a radius leading edge, the balance chord, $c_{\rm b}$, was assumed to be zero. One variation to this control surface is shown in figure 6. A spanwise row of vortex generators was installed on each wing surface just ahead of the control surface. These generators had square plan forms with sharp leading and trailing edges. They were installed with their leading edges 2 inches ahead of the flap hinge line and were spaced 6 inches apart. Angles of attack were alternately $\pm 15^{\circ}$. The third control surface was a splitter-plate type control. This control had the same profile as the first, except for a step at 60-percent chord. Thickness of the stepped or splitter-plate portion was 0.125 inch except at the pressure cells where the thickness was 0.20 inch. The control surface was cut away in successive steps so that ratios of splitter-plate chord to total-control-surface chord, $c_{\rm s}/c_{\rm t}$, of 0.40, 0.50, and
0.60 could be obtained (see fig. 5). The splitter-plate control-surface configuration is illustrated in figure 7. Another variation tested consisted of triangular wedges or tetrahedra which were superimposed on the 30-percent-chord control surface. The wedges extended from the point of maximum thickness to the trailing edge, and are illustrated in figure 8. The included angle between adjacent wedges was about 30°. Similar wedges were superimposed on the 21.5-percent plain control surface. Double thickness wedges having a 4.5° ramp angle to the free-stream direction were also investigated on this control surface. # Control-Surface Drive System A schematic drawing of the mechanical details of the drive system is illustrated in figure 9. A block diagram of the system is shown in figure 10. A detailed description and some of the operational problems encountered are contained in Appendix A. #### Instrumentation Instrumentation furnished an accurate record of control-surface motion, oscillatory control-surface hinge-moment coefficients, and shock-wave position and motion. A block diagram of the instrumentation is shown in figure 11. The instrumentation, including the NACA Ames flutter analyzer, is described in Appendix B. ## SCOPE OF TESTS Control-surface flutter derivatives were obtained for the various configurations for a wing angle of attack of 0° and for a mean angle of control-surface deflection of 0° for a range of Mach numbers from 0.6 NACA RM A58B04 to 1.15. The corresponding Reynolds numbers based on mean aerodynamic wing chord varied from 10.4 to 14.8 million. The control surface was oscillated at an amplitude of $\pm 1.08^{\circ}$ at frequencies from 5 to 30 cps. Additional data for some configurations were obtained for a control-surface mean-angle deflection of 2° , and also for a wing angle of attack of 3° . With Mach number and wing angle of attack constant, data were taken for time intervals of about 30 seconds at each frequency. ## Corrections and Precision No corrections were made for tunnel-wall effects. The possibility of a tunnel resonance phenomenon is believed to be essentially eliminated by the perforated walls of the test section. In each case where large changes in the derivatives occurred, the magnitude of the moments generally increased, which is opposite to the trend predicted by the theory in reference 9. Thus, it is believed that this phenomenon had no appreciable effect on the results of this investigation. The control surfaces were oscillated in still air up to 30 cps to determine effects of the inertia of the pressure-cell diaphragms. The magnitude of the response was barely detectable on the flutter analyzer so that no corrections were made for inertia effects. A further check on the validity of the trends indicated by the pressure cells was obtained from torsion strain gages mounted on the torsion drive rod. Signals for these gages represented total controlsurface moment of inertia, as well as the total aerodynamic forces acting on the entire control surface. Analysis for the aerodynamic damping component from this signal indicated trends as a function of Mach number and Mach numbers for zero damping similar to those obtained with the pressure cells. It was therefore concluded that the trends shown by the pressure cells are representative for the entire control surface, even in the case where the pressure cells were between the wedges. A direct comparison of magnitudes could not be made, primarily because phase angle was not determined accurately enough to enable analysis of strain-gage signals. The accuracy of the flutter analyzer was determined by means of two sine waves as inputs for a series of frequencies, amplitudes, and phase angles. These signals were also recorded and analyzed on oscillograph records. The maximum differences between the records so analyzed and readings taken from the flutter analyzer were 4.5 percent in magnitude for the damping component and 4.1° in phase angle. Based on the analysis of the oscillograph records as a standard, the probable error of any single measurement was 1.4 percent for the damping component and 1.7° for phase angle. The thermoammeters were determined to be linear within 1.0 percent by using a high-quality precision vacuum-tube voltmeter as a standard. During the tests, the meter readings were not steady for some Mach numbers. These Mach numbers were usually near that at which the damping component changed sign. Therefore, time-average readings were recorded for 30-second time intervals. In view of this unsteadiness, the over-all accuracy is estimated to be on the order of 5 percent for magnitude and $\pm 3^{\circ}$ in phase angle. Since the data are statistical in nature, it is felt important to emphasize the relationship between the resultant aerodynamic hinge-moment coefficient, $c_{h\delta}$, the phase angle, θ , and the aerodynamic damping component, $kc_{h\delta}$. The resultant hinge-moment coefficient is derived from a root-mean-square value, so that it contains the effects of all frequencies. However, the phase angle and damping component are representative of the fundamental frequency, which is the frequency at which the control surface was oscillated. A computation of the fundamental resultant from the phase angle and damping component would be subject to deviation not only because of inaccuracy of phase-angle and damping-component measurements but also because of the fact that these measurements are not necessarily for the same time interval. Although this can account for some minor deviations between phase angle and the damping component, the significant trends of the data were usually so well defined that such effects are considered to be secondary. ## RESULTS The measured derivatives are presented in tables I, II, and III for the 30-percent-chord control surface, the splitter-plate, and the 21.5-percent-chord control surface, respectively. All data presented were derived from the lower row of pressure cells located at the 3/8-semispan wing station. Data for both rows were analyzed from initial runs to determine whether there were any appreciable spanwise effects. The data were cross-plotted as a function of Mach number for a reduced frequency of 0.2 for each row. The data indicated that spanwise effects were secondary. Other results of the investigation are in the form of high-speed motion-picture shadowgraphs. Analysis of these pictures will be presented with the discussion. ## DISCUSSION The early stages of this investigation indicated that the mechanism of flutter was associated with the travel of a shock wave, rather than with potential-flow effects as described by presently available theory; for example, self-excited oscillations of the 30-percent-chord plain control surface occurred at 47 and 60 cps at 0.975 Mach number (see Appendix A). However, two-dimensional potential-flow theory presented in reference 6 indicated that the aerodynamic forces should have had a stabilizing effect for frequencies greater than 32 cps; also, the unstable aerodynamic damping component increased with reduced frequency at Mach numbers near 1, which is opposite to the trend given in reference 6. This is illustrated in figure 12 for the 30-percent control surface for $c_{\rm b}/c_{\rm f}$ equal to 0.25. Figure 12(a) presents the resultant aerodynamic hinge moment and its phase angle, and figure 12(b), the aerodynamic damping component. It may be noted that for Mach numbers near 1, the phase angle in figure 12(a) and the damping component in figure 12(b) each show a shift toward greater instability as reduced frequency increases. Visual examination of the high-speed motion-picture shadowgraphs at normal projection speeds appeared to indicate that the onset of instability occurred when the shock wave crossed the hinge line. In order to check these observations, the shadowgraphs were analyzed to determine the location and travel of the shock wave during oscillation. The results of the analysis are shown in figure 13. This figure can be used to determine the Mach number at which the shock wave crossed the hinge line. This Mach number is, perhaps coincidentally, in close agreement with the Mach number for zero damping, figure 12. This result has some similarity to that found in reference 10 wherein the onset of buzz was related to the Mach number where the shock wave first came in contact with the control surface. Although the flutter mechanism appears to be associated with the compression shock wave, other factors such as separation, amplitude, shock-wave boundary-layer interaction, interference effects, end effects, and wing-thickness effects are probably important. It appears that the flutter encountered in the present investigation is different from that which has occurred on thicker wing sections where aerodynamic instability was attributed to a time lag associated with a shock wave located on the wing proper (see refs. 1 to 3). The thinner model under investigation apparently did not generate a relatively strong shock wave which could induce such effects until the shock wave had receded onto the control surface. Nevertheless, if the flutter mechanism was associated with the position and motion of the shock wave on the control surface, it appeared likely that a modification to the control surface might have a significant effect on the aerodynamic derivatives. The effects of changing aerodynamic balance, both external and internal, vortex generators ahead of the control surface, a splitter-plate control-surface configuration, and triangular wedges will now be considered in more detail. These modifications did not appreciably alter the shock position from that indicated in figure 13. # Aerodynamic Balance Effect of external aerodynamic balance. The main effect of introducing aerodynamic balance is to decrease the magnitude of the oscillatory aerodynamic hinge moment, $|c_{h_{\delta}}|$, at
Mach number near 1. This is illustrated in figure 14(a). As in subsequent figures, data from the tables have been cross-plotted to obtain derivatives as a function of Mach number for a reduced frequency, k, of 0.2. It should be noted that data for the unbalanced control are for the 21.5-percent-chord control surface, as compared to the 30-percent-chord control from which data were obtained for the other balance chord to flap chord ratios. Nevertheless, the variation of hinge-line location had very little effect on the Mach number for zero damping, or on the magnitude of the unstable aerodynamic damping component (fig. 14(b)). Effect of leading-edge seal. The addition of a fabric seal at the leading edge for two balance chord to flap chord ratios had very little effect. Data for the front hinge-line position are shown in figure 15. ## Vortex Generators One arrangement of vortex generators was added ahead of the control surface. The results shown in figure 16 indicated such a deleterious effect on stability that other arrangements of the vortex generators on the wing were not investigated. Since vortex generators have been used to prevent turbulent-flow separation, a more suitable location might have been on the control surface behind the shock wave. However, honeycomb construction of this control surface precluded attachment of the vortex generators on the flap. # Splitter-Plate Configurations Effect of systematic variation of splitter-plate to total-control-chord ratio. Results for the three ratios of splitter-plate chord to total-control chord are shown in figure 17. The trends of the data with Mach number are nearly the same. Unstable damping at Mach numbers near 1 decreased by a factor of about 3 as compared to the configurations previously discussed. The shadowgraphs were examined to see whether these large gains in the reduction of instability could be explained by the changes in the flow field due to the step. The presence of the step did not fix the shock wave nor alter the rearward travel of the compression shock wave as Mach number approached 1. When the shock wave reached the step, an NACA RM A58B04 expansion wave formed at this point. However, the presence of the step appeared to limit the distance the shock wave traveled during control-surface oscillation. When the mean position of the shock wave was ahead of the step, the most rearward travel during oscillation was to the location of the step. Conversely, when the mean position was behind the step, forward travel was again limited to the step. It seems likely that the presence of an expansion at the step would have a cancelling effect on the compression shock wave. Thus it appears that the height of the step, as well as its chordwise location, may be an important parameter. Nevertheless, large improvements in aerodynamic damping characteristics result from the decrease in shock-wave motion brought about by the splitter-plate configuration. Effect of mean angle of deflection. The effects of mean angle of deflection are shown in figure 18. The curves are for a splitter-plate to total-control-chord ratio, $c_{\rm g}/c_{\rm t}$, of 0.6. When mean angle of deflection is increased, the curves are shifted toward lower Mach numbers but exhibit the same general trend. Thus, deflection of the control surface induces aerodynamic instability at a slightly lower Mach number. Effect of wing angle of attack. The effects of angle of attack are shown in figure 19. When the angle of attack increased from 0° to 3°, the magnitude of the derivatives increased and the Mach number for zero damping decreased. ## Wedges In effect, the wedges provided a step in thickness at points behind maximum control-surface thickness. Thus, it appeared that the advantages inherent in the splitter-plate configuration would be available at all Mach numbers regardless of shock-wave position on the control surface. The effects of wedges for the 30-percent control surface are shown in figure 20. Large reductions in positive aerodynamic damping coefficient were realized from wedges having trailing-edge thickness equal to control-surface maximum thickness. Also, large reductions in the magnitude of the resultant hinge-moment derivative occurred. The effects of the addition of wedges for the unbalanced, 21.5-percent control surface are shown in figure 21. It may be noted that for the single-thickness wedges, instability at subsonic speeds is limited to a small speed range near a Mach number of 0.97. For the double-thickness wedge configuration, aerodynamic instability was eliminated at all subsonic Mach numbers. remain similar. Although the double-thickness wedges completely eliminated instability at subsonic Mach numbers, the signal level with control surface fixed, which had been negligible for all other configurations, appeared to rise to a buffeting level. There is a possibility that an optimum wedge thickness could be found which would minimize buffeting and retain the improved stability of the double-thickness wedges. Buffeting data as such were not obtained, so that a comparison for the various configurations is not available. #### CONCLUSIONS The results of an experimental investigation of the dynamic hingemoment characteristics for several control-surface configurations led to the following conclusions: - 1. For the 30-percent-chord flap, on which most of the modifications were tested, unstable aerodynamic damping components always appeared at about 0.95 Mach number after the shock had moved back onto the control surface. - 2. No significant improvements in the aerodynamic damping characteristics were obtained from a variation of aerodynamic balance. - 3. The addition of vortex generators on the wing just ahead of the control surface had a deleterious effect on the aerodynamic damping. - 4. Splitter-plate configurations reduced aerodynamic controlsurface instability at transonic speeds. - 5. Stable damping characteristics at subsonic Mach numbers were obtained by the addition of triangular wedges on a 21.5-percent-chord control surface. Ames Aeronautical Laboratory National Advisory Committee for Aeronautics Moffett Field, Calif., Feb. 4, 1958 NACA RM A58BO4 ## APPENDIX A ## CONTROL-SURFACE DRIVE SYSTEM A schematic drawing of the mechanical details of the drive system is illustrated in figure 9. The exciter mechanism consists of an electromechanical hydraulic servo valve which controls a hydraulic piston. The cable-spring system transmits the force from the hydraulic cylinder to the torsion rod which is bolted to the control surface. A closed-loop servo system was constructed which would control the mean angle of deflection, amplitude, and frequency of the control surface. A block diagram of this system is shown in figure 10. Frequency response for an amplitude of 10 of control-surface deflection was flat to 45 cps with a resonant frequency at 55 cps. Since the control surface was to be oscillated only to 30 cps, the resonant frequency was considered to be sufficiently high. Nevertheless, it was at first impossible to obtain data at 0.975 Mach number because a selfexcited oscillation, or control-surface "buzz," occurred at about 47 cps. Analysis of oscillograph records indicated that the phase angle between control-surface position and the aerodynamic hinge moment was about 150°. indicating an unstable aerodynamic damping component and that the buzz was aerodynamic in origin. An attenuator and lead network were added to the servo amplifier, and the torsional stiffness of the cable-spring system was increased from 360 to 4200 foot-pounds per radian. However, as soon as tunnel Mach number reached 0.975, control-surface buzz again occurred at 60 cps, and could again be attributed to an aerodynamic origin. The flutter was finally eliminated by adding dampers to prevent transverse oscillation of the large springs, and also by improving the filtering of line frequency in the servo amplifier. (Another solution would have been to increase the piston diameter so that the flow limit through the servo valve could attenuate these frequencies.) With the aforementioned changes, it was then possible to obtain data at desired frequencies up to a Mach number of 1.15 without incident. ## APPENDIX B #### INSTRUMENTATION Instrumentation furnished an accurate record of control-surface motion, oscillatory control-surface hinge-moment coefficients, and shock-wave position and motion. ## Control-Surface Motion The control-surface motion was measured with an NACA slide-wire position transducer which was attached to the sector arm shown in figure 9. In order to determine the amount of twist of the control surface during oscillation, a second slide-wire positioner was mounted temporarily near the top of the control surface. In still air, Lissajou patterns from 5 to 30 cps were straight lines indicating no detectable phase angle between the top and bottom slide-wire positioners. Since corrections for control-surface twist would be small, and would probably change the phase angle not more than 1° or 2°, all data have been referenced to the bottom slide-wire positioner. As a further check, oscillograph records of the sum traces for the upper and lower rows of pressure cells were analyzed with respect to the bottom positioner at 0.9 and 0.975 Mach number. These Mach numbers were chosen because a phase shift of the order of 60° occurred in the phase angle of the sum trace of the bottom row with respect to the bottom positioner. However, the phase angle for the top row was the same as for the bottom row at each Mach number within ±20, which approximates the accuracy with which the records can be analyzed. Therefore, twist of the control surface is considered to have only a secondary effect on the measured oscillatory aerodynamic derivatives. ## Oscillatory Control-Surface Hinge-Moment Coefficients The fluctuating air forces at the 25- and 75-percent spanwise stations of the control surface were measured with NACA
flush-type pressure cells (ref. 10). Necessary adjuncts are pressure orifices adjacent to each pressure cell. The orifices in themselves provide static-pressure distributions recorded from mercury manometers. These orifices are also connected through a pressure switch to the interior of each pressure cell to provide a reference pressure equivalent to the static pressure at the adjacent orifice. This insures that the pressure cells will operate at the center of their linear range. Closing the pressure switch prevents any undesired pressure pulsations from the orifice from reaching the back side of the pressure cell. The switches are also used in the static calibration of the pressure cells at the beginning and end of each tunnel run. A block diagram of the associated instrumentation is shown in figure 11(a). Nine pairs of cells at each spanwise station were so located that each pair represented a region having equal area moment about the flap hinge line. Cells on opposite sides of the control surface at the same station, which formed a pair, were incorporated into the same Wheatstone bridge circuit. The bridge output was proportional to the difference in pressure between the two surfaces multiplied by its moment arm. When a different hinge line was used, the cells were recalibrated to account for the change in moment arm. Two-kilocycle carrier equipment was used to amplify bridge outputs. Electronic summation of the amplified responses from the pressure cells provided an output proportional to the oscillatory aerodynamic hinge moment acting on the control surface. Electrical response from each pair of cells, the summing circuit, and the control-surface position transducer were recorded on oscillographs. In addition, summing circuit and position outputs were simultaneously recorded on magnetic tape and used as inputs to an electronic flutter analyzer. The NACA Ames flutter analyzer is an instrument which was devised to analyze electronically the control position and oscillatory aerodynamic hinge moments. Meter readings of the following quantities were obtained: rms amplitude of control-surface motion, rms amplitude of the oscillatory aerodynamic hinge moment, the phase angle between the fundamental components of the two inputs at the frequency at which the control surface was oscillated, and a meter reading proportional to the aerodynamic damping component. For an understanding of the operation of this instrument, reference is made to the block diagram in figure ll(b). Thermoammeters which are driven by direct-current amplifiers indicate rms amplitudes. The position signal was then shifted 90°, since it is necessary to use velocity rather than displacement in obtaining aerodynamic damping. Independent d-c power amplifiers were used to drive the coils of a dynamometer which was used as a multiplier to obtain the time-average product of the fundamental velocity and sum signals. This gave a meter reading proportional to aerodynamic damping. The phasemeter is also a multiplying device which gives a meter reading that is a function of the phase difference between the fundamental components of velocity and sum signals. 16 ## Shock-Wave Motion and Position A mercury vapor lamp powered by 1200 volts d.c. was used as a point light source. The lamp was mounted directly over the 70-percent-chord station at a sufficient height so that rays of light traveled along constant percent chord lines of the model. The light source was above the tunnel ceiling and the presence of shock waves was indicated by shadows on the tunnel floor. A motion-picture camera, operated at 300 frames per second, was mounted adjacent to the light source to record shock-wave motion and position. P ## REFERENCES - 1. Erickson, Albert L., and Stephenson, Jack D.: A Suggested Method of Analyzing for Transonic Flutter of Control Surfaces Based on Available Experimental Evidence. NACA RM A7F30, 1947. - 2. Smilg, Benjamin: The Prevention of Aileron Oscillations at Transonic Airspeeds. AAF TR No. 5530, Army Air Forces, Dec. 24, 1946. - 3. Erickson, Albert L., and Mannes, Robert L.: Wind-Tunnel Investigation of Transonic Aileron Flutter. NACA RM A9B28, 1949. - 4. Thompson, Robert F., and Moseley, William C., Jr.: Oscillating Hinge Moments and Flutter Characteristics of a Flap-Type Control Surface on a 4-Percent-Thick Unswept Wing With Low Aspect Ratio at Transonic Speeds. NACA RM L55K17, 1956. - 5. Thompson, Robert F., and Moseley, William C., Jr.: Effect of Hinge-Line Position on the Oscillating Hinge Moments and Flutter Characteristics of a Flap-Type Control at Transonic Speeds. NACA RM L57C11, 1957. - 6. Thompson, Robert F., and Clevenson, Sherman A.: Aerodynamics of Oscillating Control Surfaces at Transonic Speeds. NACA RM L57D22b, 1957. - 7. Anon.: Flight Test Progress Report No. 23 for Period Ending 7 October 1955 for Model FJ-4 Airplanes. Rep. No. AN 54H-374-23 (Contract NOa(s) 54-323), North American Aviation, Inc., Oct. 20, 1955. - 8. McCullough, George B., Nitzberg, Gerald E., and Kelly, John A.: Preliminary Investigation of the Delay of Turbulent Flow Separation by Means of Wedge-Shaped Bodies. NACA RM A50L12, 1951. - 9. Runyon, Harry L., and Watkins, Charles E.: Considerations on the Effect of Wind-Tunnel Walls on Oscillating Air Forces for Two-Dimensional Subsonic Compressible Flow. NACA Rep. 1150, 1953. (Supersedes NACA TN 2552) - 10. Henning, Allen B.: Results of a Rocket-Model Investigation of Control-Surface Buzz and Flutter on a 4-Percent-Thick Unswept Wing and on 6-, 9-, and 12-Percent-Thick Swept Wings at Transonic Speeds. NACA RM L53I29, 1953. - 11. Erickson, Albert L., and Robinson, Robert C.: Some Preliminary Results in the Determination of Aerodynamic Derivatives of Control Surfaces in the Transonic Speed Range by Means of a Flush-Type Electrical Pressure Cell. NACA RM A8HO3, 1948. TABLE I.- MEASURED FLUTTER DERIVATIVES FOR 30-PERCENT-CHORD PLAIN CONTROL SURFACE; $\delta_{\rm O}$ = $\pm 1.08^{\rm \circ}$ | | | | c | b/cf | = 0.40; | $\delta_{\rm m} = 0^{\rm O}$ | ; a = 0 | 0 | | | | |------|--|--|--|---|--|------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------|------------------------------| | | | Unse | aled | | | | | Seal | ed | | | | М | ω | k | ch8 | θ , deg | kc _h . | м | ω | k | $ ^{c}h_{\delta} $ | θ , deg | ^{kc} hġ | | 0.60 | 31.4
62.8
94.2
125.7 | 0.100
.201
.301
.402 | 0.179
.187
.238
.210 | 185
185
206
225 | -0.014
049
079
126 | 0.60 | 31.4
62.8
94.2
125.7 | 0.100
.200
.300
.400 | 0.122
.236
.122
.125 | 182
206
231 | -0.007
035
059
112 | | .70 | 31.4
62.8
94.2
125.7 | .086
.173
.259
.345 | .220
.226
.236
.240 | 184
183
199
212 | 012
043
076
114 | .70 | 31.4
62.8
94.2
125.7 | .086
.172
.259
.345 | .194
.210
.192
.208 | 182
184
202
216 | 006
037
075
113 | | .80 | 31.4
62.8
94.2
125.7 | .075
.150
.225
.300 | .246
.245
.251
.257 | 182
183
199
207 | 015
041
074
129 | .80 | 31.4
62.8
94.2
125.7 | .076
.152
.228
.305 | .215
.222
.217
.245 | 181
185
202
214 | 010
048
080
122 | | .85 | 31.4
62.8
94.2
125.7 | .071
.141
.212
.282 | .239
.271
.265
.285 | 183
184
194
207 | 018
046
102
128 | .85 | 31.4
62.8
94.2
125.7 | .072
.144
.215
.287 | .222
.225
.236
.271 | 183
187
202
214 | 023
054
090
144 | | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.200
.267 | .234
.269
.338
.380 | 185
204
208
205 | 025
081
142
184 | .90 | 31.4
62.8
94.2
125.7 | .068
.136
.204
.272 | .213
.239
.288
.355 | 185
196
210
213 | 039
097
144
200 | | .925 | 31.4
62.8
94.2
125.7 | .065
.130
.195
.260 | .238
.305
.357
.417 | 191
194
200
195 | 050
097
119
151 | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.198
.265 | .203
.281
.365
.419 | 203
207
212
199 | 080
145
178
155 | | .95 | 31.4
62.8
94.2
125.7
157.1 | .063
.127
.191
.254
.318 | .437
.428
.451
.420
.408 | 178
169
174
170
170 | .021
.016
.053
.045 | •95 | 31.4
62.8
94.2
125.7 | .064
.129
.193
.257 | .408
.354
.380
.339 | 172
171
171
180 | .037
.027
.021
0 | | | 188.5 | .381 | .396 | 166 | .064 | -975 | 31.4
62.8 | .063
.125 | .847
.816 | 170
154 | .081
.128 | | •975 | 31.4
62.8
94.2
125.7
157.1 | .062
.124
.186
.248 | .894
.876
.828
.758 | 170
153
157
149
144 | .208
.312
.343
.389
.404 | 1.00 | 31.4
62.8
94.2 | .061
.123
.184 | .686
.697
.670 | 173
160
161 | .040
.067
.092 | | 1.00 | 188.5
31.4
62.8 | .060 | .809
.763
.785 | 141
170
160 | .317
.158
.172 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .572
.574
.583
.587 | 175
165
172
170 | .020
.019
.027
.024 | | | 94.2
125.7
157.1
188.5 | .181
.242
.302
.363 | .744
.725
.710
.721 | 162
156
152
150 | .225
.259
.319
.324 | 1.10 | 31.4
62.8
94.2
125.7 | .056
.112
.168 | | 175
166
173
167 | .018
.022
.019 | | 1.05 | 31.4
62.8
94.2
125.7
157.1
188.5 | .058
.116
.173
.231
.289
.347 | .582
.587
.615
.623
.631 |
176
167
173
171
170
169 | .046
.053
.062
.069
.089 | | | | | | 33 | | 1.10 | 31.4
62.8
94.2
125.7
125.7
157.1
188.5 | .056
.112
.168
.224
.224
.280 | .584
.570
.546
.549
.556
.582 | 176
167
173
171
168
170
169 | .044
.043
.051
.045
.057
.091 | | | | | | | TABLE I.- MEASURED FLUTTER DERIVATIVES FOR 30-PERCENT-CHORD PLAIN CONTROL SURFACE; $\delta_{\rm O}$ = $\pm 1.08^{\rm O}$ - Continued | | | | C | _b /c _f | = 0.10; | $\delta_{m} = 0^{\circ}$ |); α = 0 | 0 | | | | |------|-------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|--------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------|------------------------------| | | | Unse | aled | | | | | Seal | .ed | | | | М | ω | k | ch8 | θ,
deg | kc _h | М | ω | k | $ c_{h_{\delta}} $ | θ,
deg | kc _h | | 0.60 | 31.4
62.8
94.2
125.7 | 0.100
.200
.300
.400 | 0.468
.413
.418
.457 | 177
178
197
211 | -0.060
099
160
232 | 0.60 | 31.4
62.8
94.2
125.7 | 0.100
.200
.299
.399 | 0.428
.401
.396
.502 | 179
180
211
220 | -0.063
114
205
276 | | .70 | 31.4
62.8
94.2
125.7 | .085
.170
.254
.339 | .432
.430
.422
.469 | 177
174
194
201 | 055
089
119
223 | .70 | 31.4
62.8
94.2
125.7 | .085
.170
.255
.340 | .416
.433
.444
.502 | 180
178
196
206 | 061
097
179
254 | | .80 | 31.4
62.8
94.2
125.7 | .078
.156
.233
.311 | .454
.493
.516
.538 | 170
173
186
193 | 0
066
141
206 | .80 | 31.4
62.8
94.2
125.7 | .075
.149
.224
.299 | .474
.482
.493
.542 | 178
178
195
202 | 052
094
180
237 | | -85 | 31.4
62.8
94.2
125.7 | .070
.140
.210
.281 | .503
.511
.539
.574 | 176
186
186
190 | 031
080
129
169 | .85 | 31.4
62.8
94.2
125.7 | .070
.141
.211
.282 | .481
.497
.523
.596 | 179
180
195
199 | 053
111
195
252 | | .90 | 31.4
62.8
94.2
125.7 | .067
.135
.202
.269 | .491
.535
.598
.685 | 174
173
186
182 | 040
098
153
119 | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201
.269 | .454
.523
.587
.705 | 182
186
201
191 | 102
184
243
258 | | .925 | 31.4
62.8
94.2
125.7 | .065
.130
.196
.261 | .581
.609
.633
.658 | 167
164
173
169 | 006
0
012
006 | .925 | 31.4
62.8
94.2
125.7 | .065
.130
.195
.260 | .470
.504
.601
.640 | 188
180
192
186 | 113
140
198
163 | | •95 | 31.4
62.8
94.2
125.7 | .063
.127
.190
.254 | .722
.694
.692
.672 | 167
155
163
161 | .053
.093
.114
.127 | •95 | 31.4
62.8
94.2
125.7 | .064
.127
.191
.255 | .779
.720
.725
.679 | 171
161
164
162 | .002
.111
.135
.140 | | .975 | 31.4
62.8
94.2
125.7 | .062
.124
.186
.248 | .936
.916
.875
.839 | 166
152
155
153 | .235
.159
.241
.265 | .96 | 31.4
62.8
94.2
125.7 | .063
.127
.190
.254 | .956
.971
.949
.884 | 170
155
161
159 | .010
.211
.223
.335 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.121
.182
.243 | .803
.811
.765
.756 | 167
153
159
156 | .126
.136
.178
.227 | •975 | 31.4
62.8
94.2
125.7 | .062
.124
.186
.248 | .930
.908
.850
.838 | 174
153
157
150 | .082
.198
.255
.328 | | 1.05 | 31.4
62.8
94.2
125.7 | .057
.115
.173
.230 | .706
.732
.756
.759 | 168
161
168
166 | .040
.050
.062
.062 | 1.00 | 31.4
62.8
94.2
125.7 | .060
.124
.186
.248 | .868
.767
.786
.747 | 170
159
160
156 | .054
.079
.206
.190 | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.223 | .688
.720
.724
.742 | 168
161
167
166 | .295
.058
.060
.068 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.115
.173
.231 | .653
.670
.683
.710 | 173
163
170
168 | 0
.031
.043
.053 | TABLE I.- MEASURED FLUTTER DERIVATIVES FOR 30-PERCENT-CHORD PLAIN CONTROL SURFACE; $\delta_{\rm O}$ = $\pm 1.08^{\rm O}$ - Concluded | | | | | | $\delta_{\mathbf{m}} = 0^{\circ}$ | ; a = 0 | 0 | | | | | |------|---------------------------------------|------------------------------|--------------------------------------|--------------------------|-----------------------------------|---------|-------------------------------|-------------------------------|-------------------------------|--------------------------|------------------------------| | | Unse | aled, c | b/cf = | 0.25 | | Unsea | led sin | gle wed | ges, c _b | /cf = | 0.40 | | М | ω | k | ch8 | θ,
deg | kc _h . | М | ω | k | ch8 | θ,
deg | kc _h | | 0.60 | 31.4
62.8
94.2
125.7 | .204
.305
.407 | 0.277
.273
.298
.284 | | -0.123
132
176
242 | 0.60 | 31.4
62.8
94.2
125.7 | 0.098
.197
.295
.394 | 0.145
.245
.127
.100 | 185
191
225
251 | -0.007
022
053
098 | | .70 | 31.4
62.8
94. 2
125.7 | .087
.174
.261
.348 | .275
.295
.309
.279 | | 098
123
160
214 | .70 | 31.4
62.8
94.2
125.7 | .085
.170
.254
.339 | .210
.095
.194
.150 | 184
186
206
225 | 006
028
041
084 | | .80 | 31.4
31.4
62.8
94.2
125.7 | .076
.076
.153
.230 | .290
.274
.323
.324
.329 | 240
194
207
213 | 098
111
117
149
210 | .80 | 31.4
62.8
94.2
125.7 | .075
.150
.226 | .175
.178
.214
.202 | 191
180
198
210 | 014
034
067
092 | | .85 | 31.4
62.8
94.2
125.7 | .072
.144
.216
.288 | .282
.298
.337
.363 | 265
191
206
210 | 093
105
159
202 | .85 | 31.4
62.8
94.2
125.7 | .071
.142
.213
.284 | .192
.220
.202
.228 | 186
180
206
213 | 027
041
090
132 | | .90 | 31.4
62.8
94.2
125.7 | .068
.135
.203
.270 | .237
.268
.337
.378 | 196
205
204 | .077
091
153
191 | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201
.269 | .188
.230
.271
.366 | 201
206
214
205 | 058
103
165
185 | | •925 | 31.4
62.8
94.2
125.7 | .065
.131
.196
.262 | .291
.332
.380
.421 | 191
190
190 | 058
054
078
110 | .925 | 31.4
62.8
94.2
125.7 | .066
.131
.197
.263 | .188
.258
.352
.395 | 214
204
206
192 | 096
150
166
126 | | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.256 | .505
.484
.449
.457 | 186
171
166 | 0
.052
.062
.113 | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.256 | .316
.352
.360
.394 | 187
169
170
173 | 040
0
.008
.030 | | .975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.249 | .806
.785
.748
.700 | 161
159
150 | 0
.202
.292
.311 | •975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.249 | .410
.364
.378
.379 | 179
165
170
165 | .058
.040
.049
.050 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.122
.182
.243 | .735
.735
.702
.693 | 165
161
155 | .084
.150
.203
.269 | 1.00 | 31.4
62.8
94.2
125.7 | .061
.121
.182
.243 | .371
.344
.330
.337 | 174
164
171
168 | .038
.041
.040
.041 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .575
.587
.587
.604 | 172
173
170 | 0
.024
.072
.076 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.117
.175
.233 | .401
.407
.408
.413 | 175
165
171
169 | .027
.034
.037
.051 | | 1.10 | 31.4
62.8
94.2
125.7 | .055
.111
.166
.222 | .531
.578
.537
.554 | 172
173
172 | 0
.045
.056
.055 | 1.09 | 31.4
62.8
94.2
125.7 | .056
.113
.169
.226 | .411
.403
.389
.391 | 175
166
172
169 | .023
.024
.038
.043 | | 1.13 | 31.4
62.8
94.2
125.7 | .054
.108
.162
.216 | .516
.516
.516 | 172
175
171 | .002
.004
.049
.045 | | | | | | | TABLE II.- MEASURED FLUTTER DERIVATIVES FOR SPLITTER-PLATE CONTROL SURFACE; $c_{\rm b}/c_{\rm f}$ = 0.40; $\delta_{\rm o}$ = ±1.08° | | | | | | $c_{ m s}/c_{ m t}$ | = 0.40 | | | | | | |------|--|--|--|---|--|--------|---|--|--|--|--| | | δ | $_{\rm m} = 0^{\rm o};$ | $\alpha = 0_0$ | | | | δ _π | = 2°; | x = 0 ₀ | | | | М | ω | k | $ ^{\mathbf{c}}\mathbf{h}_{\delta} $ | θ,
deg | kc _h * | М | ω | k | $ c^{\mu_{\mathcal{B}}} $ | θ,
deg | kc _h | | 0.80 | 31.4
62.8
94.2
125.7 | 0.075
.151
.226
.302 | 0.215
.225
.239
.252 | 186
176
189
194 | -0.028
019
047
061 | 0.80 | 31.4
62.8
94.2
125.7 | 0.077
.153
.230
.307 | 0.092
.092
.131
.190 |
201
215
227
225 | -0.017
044
073
091 | | -85 | 31.4
62.8
94.2
125.7 | .071
.141
.212
.283 | .222
.246
.239
.266 | 184
176
190
190 | 022
030
057
071 | .85 | 31.4
62.8
94.2
125.7 | .072
.144
.215
.287 | .128
.177
.209
.278 | 192
197
211
210 | 026
066
094
111 | | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201
.268 | .238
.268
.295
.321 | 186
177
190
187 | 024
035
065
075 | .90 | 31.4
62.8
94.2
125.7 | .068
.136
.204
.272 | .255
.282
.334
.374 | 180
180
188
189 | 025
055
063
068 | | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.197
.263 | .314
.326
.322
.333 | 179
165
176
175 | 015
.016
.012
.012 | .925 | 31.4
62.8
94.2
125.7
157.1 | .066
.132
.198
.264 | .317
.337
.364
.420 | 180
174
184
180
177 | 010
034
043
014 | | •95 | 31.4
62.8
94.2
125.7
157.1
188.5
188.5 | .064
.128
.192
.256
.320
.384
.384 | .358
.370
.370
.366
.366
.438
.452 | 180
163
167
167
168
174
174 | 0
.039
.050
.047
.039
.042 | •95 | 31.4
62.8
94.2
125.7
157.1
188.5 | .396
.396
.128
.192
.257
.321
.385 | .554
.508
.502
.533
.492
.613 | 174
163
168
166
165
165 | .014
.016
.038
.042
.055
.051
.070 | | •975 | 31.4
62.8
94.2
125.7
157.1
188.5 | .062
.125
.187
.249
.312
.374 | .558
.531
.531
.508
.498
.610 | 170
158
157
155
153
156 | .060
.109
.136
.153
.153 | •975 | 31.4
62.8
94.2
125.7
157.1
188.5 | .062
.125
.187
.250 | .565
.588
.596
.599
.607 | 178
163
166
164
163
166 | .023
.045
.067
.080
.098 | | 1.00 | 31.4
62.8
94.2
125.7
157.1
188.5 | .061
.122
.183
.244
.304
.365 | .408
.413
.398
.412
.420
.504 | 172
162
165
161
161
161 | .044
.058
.065
.078
.076
.088 | 1.00 | 31.4
62.8
94.2
125.7
157.1
188.5 | .375
.061
.122
.182
.243
.304
.365 | .556
.554
.563
.567
.573 | 176
162
165
164
160
161 | .045
.060
.081
.079
.098 | | 1.05 | 31.4
62.8
94.2
125.7
157.1
188.5 | .058
.117
.175
.233
.292
.350 | .431
.442
.452
.475
.463
.604 | 172
163
171
170
169
175 | .032
.034
.030
.023
.043
.013 | 1.05 | 31.4
62.8
94.2
125.7
157.1
188.5 | .058
.116
.174
.232
.290 | .597
.603
.622
.655
.672 | 174
165
171
169
169
171 | .022
.025
.035
.018
.028 | | 1.10 | 31.4
62.8
94.2
125.7
157.1
188.5 | .056
.112
.168
.224
.279
.335 | .418
.420
.425
.439
.451
.552 | 173
167
170
170
169
173 | .025
.021
.025
.022
.041
.016 | 1.10 | 31.4
62.8
94.2
125.7
157.1
188.5 | .056
.112
.167
.223
.279
.335 | .564
.578
.582
.586
.617
.693 | 174
165
172
170
170
172 | .013
.021
.017
.030
.040 | TABLE II.- MEASURED FLUTTER DERIVATIVES FOR SPLITTER-PLATE CONTROL SURFACE; c_b/c_f = 0.40; δ_0 = $\pm 1.08^{\circ}$ - Continued | | | | | | c _s /c _t | = 0.50 | | | | | | |------|-------------------------------|-------------------------------|-------------------------------|---------------------------|--------------------------------|--------|-------------------------------|-------------------------------|-------------------------------|---|------------------------------| | | δ | $m = 0^{\circ};$ | $\alpha = 0^{\circ}$ | | | | δ _m | = 2°; | $\alpha = 0^{\circ}$ | | | | М | ω | k | ch8 | θ,
deg | kc _h | М | 3 | k | $ c_{h_{\bar{\delta}}} $ | θ,
deg | kc _h | | 0.80 | 31.4
62.8
94.2
125.7 | 0.075
.150
.225
.300 | 0.260
.268
.272
.297 | 186
180
189
188 | -0.010
019
046
063 | 0.80 | 31.4
62.8
94.2
125.7 | 0.075
.151
.226
.302 | 0.119
.135
.164
.196 | 195
194
2 08
208 | -0.032
041
067
081 | | .85 | 31.4
62.8
94.2
125.7 | .071
.141
.212
.283 | .249
.284
.297
.321 | 186
180
189
187 | 005
019
039
054 | .85 | 31.4
62.8
94.2
125.7 | .071
.141
.212
.283 | .155
.182
.205
.246 | 201
190
201
200 | 036
045
069
075 | | .90 | 31.4
62.8
94.2
125.7 | .067
.135
.202
.269 | .252
.297
.332
.383 | 186
182
190
183 | 013
040
058
041 | .90 | 31.4
62.8
94.2
125.7 | .067
.135
.202
.269 | .206
.233
.266
.316 | 191
184
191
181 | 041
042
048
058 | | .925 | 31.4
62.8
94.2
125.7 | .065
.131
.197
.262 | .349
.349
.378
.355 | 180
171
175
175 | .017
.021
.026
.023 | .925 | 31.4
62.8
94.2
125.7 | .066
.131
.197
.262 | .253
.267
.289
.314 | 188
176
184
180 | 035
0
008
008 | | .95 | 31.4
62.8
94.2
125.7 | .066
.132
.198
.264 | .404
.399
.385
.399 | 180
166
170
168 | .034
.055
.073
.074 | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.257 | .350
.372
.379
.417 | 188
167
173
171 | 021
.027
.046
.016 | | .975 | 31.4
62.8
94.2
125.7 | .063
.125
.188
.251 | .539
.547
.539
.531 | 177
163
165
161 | .050
.104
.139
.146 | •975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.249 | •385
•396
•399
•414 | 185
167
172
170 | 0
.047
.055
.028 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.123
.184
.245 | .443
.454
.447
.457 | 178
166
171
167 | .051
.073
.077
.076 | 1,00 | 31.4
62.8
94.2
125.7 | .061
.122
.183
.244 | .370
.381
.381
.384 | 184
167
172
169 | 0
.040
.052
.032 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.117
.175
.234 | .434
.450
.455
.491 | 181.
171
177
174 | .019
.023
.032
.044 | 1,05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .370
.373
.395
.404 | 185
172
178
177 | 012
.014
.015 | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.223 | .417
.419
.430
.458 | 181
171
177
175 | .012
.022
.022
.019 | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.222 | •359
•364
•387
•395 | 180
172
170
176 | .014
.016
.013
.005 | TABLE II.- MEASURED FLUTTER DERIVATIVES FOR SPLITTER-PLATE CONTROL SURFACE; c_b/c_f = 0.40; δ_0 = $\pm 1.08^{\circ}$ - Continued | | | | | | c _s /ct | = 0.60 | | | | | | |------|-------------------------------|-------------------------------|--|--------------------------|---------------------------------------|--------------|-------------------------------|-------------------------------|-------------------------------|--------------------------|-----------------------------| | | δ | $m = 0^{\circ};$ | a = 0° | | | | δ_{m} | = 2 ⁰ ; | $\alpha = 0_{O}$ | | | | М | ε | k | che | θ,
deg | kc _h δ | м | 3 | k | c _P | θ,
deg | kc _h | | 0.80 | 31.4
62.8
94.2
125.7 | 0.071
.150
.226
.301 | 0.158
.174
.216
.195 | 189
178
192
189 | -0.021
011
015
031 | 0.80 | 31.4
62.8
94.2
125.7 | 0.076
.153
.229
.305 | 0.179
.204
.226
.264 | 193
193
209
205 | -0.021
042
068
078 | | .85 | 31.4
62.8
94.2
125.7 | .071
.142
.213
.285 | .164
.166
.166
.206 | 180
177
192
186 | 020
015
024
029 | .85 | 31.4
62.8
94.2
125.7 | .071
.143
.214
.286 | .222
.242
.299
.351 | 199
194
209
202 | 038
058
097
103 | | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.202
.269 | .179
.193
.209
.232 | 188
180
191
182 | 023
014
022
018 | .90 | 31.4
62.8
94.2
125.7 | .068
.136
.204
.272 | .420
.455
.470
.523 | 204
173
183
176 | 036
.014
.005
.023 | | .925 | 31.4
62.8
94.2
125.7 | .065
.131
.196
.262 | .223
.223
.23 ⁴
.239 | 163
170
178
194 | 013
.013
.022
.035 | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.198
.265 | .452
.486
.532
.569 | 188
170
180
173 | 009
.035
.044
.045 | | .95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.256 | .225
.251
.241
.222 | 183
167
176
170 | 0
.03 ¹
.043
.047 | •95 | 31.4
62.8
94.2
125.7 | .064
.129
.193
.257 | .573
.583
.612
.619 | 187
170
175
170 | 0
.077
.104
.087 | | •975 | 31.4
62.8
94.2
125.7 | .062
.124
.186
.248 | .366
.352
.355
.368 | 169
161
168
182 | .017
.076
.096
.102 | •97 5 | 31.4
62.8
94.2
125.7 | .063
.125
.188
.250 | .510
.549
.563
.608 | 218
189
181
183 | 0
.042
.051
.023 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.121
.182
.243 | .288
.288
.289
.312 | 185
167
175
170 | .004
.045
.054
.054 | 1.00 | 31.4
62.8
94.2
125.7 | .061
.122
.183
.244 | •520
•527
•530
•575 | 215
191
181
184 | 0
.049
.065
.034 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .257
.264
.272
.304 | 161
170
182
198 |
012
.016
.012 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .520
.530
.546
.591 | 198
171
183
178 | 020
.016
.012
.009 | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.112
.168
.224 | .246
.262
.265
.283 | 182
171
183
177 | .008
.015
.012
.012 | 1.10 | 31.4
62.8
94.2
125.7 | .056
.112
.167
.223 | .491
.504
.520
.553 | 186
172
178
178 | 0
.019
.019 | TABLE II.- MEASURED FLUTTER DERIVATIVES FOR SPLITTER-PLATE CONTROL SURFACE; $c_b/c_f=0.40;\ \delta_0=\pm1.08^\circ$ - Concluded | | | | | | c _s /c _t | = 0.60 |) | | | | | |------|-------------------------------|-------------------------------|-------------------------------|--------------------------|--------------------------------|--------|---|--|--|--|--------------------------------------| | | δ | m = 0°; | $\alpha = 3^{\circ}$ | | | | $\delta_{ m m}$ | = 2 ⁰ ; | x = 3° | | | | М | ω | k | $ ^{c_{h_{\delta}}} $ | θ,
deg | kc _h | М | ω | k | $ c_{h_{\delta}} $ | θ,
deg | kc _h . | | 0.80 | 31.4
62.8
94.2
125.7 | 0.077
.153
.230
.307 | 0.282
.341
.331
.372 | 182
175
186
185 | 0
005
035
015 | 0.80 | 31.4
62.8
94.2
125.7 | 0.075
.151
.226
.301 | 0.205
.219
.246
.287 | 193
185
198
200 | -0.020
034
064
084 | | .85 | 31.4
62.8
94.2
125.7 | .071
.143
.214
.286 | .326
.333
.352
.389 | 189
175
183
182 | 033
014
014
028 | .85 | 31.4
62.8
94.2
125.7
157.1 | .070
.141
.211
.282
.353 | .237
.235
.268
.351
.360 | 194
185
199
201
198 | 041
059
077
087
111 | | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201
.268 | .351
.396
.416
.460 | 187
173
181
177 | 030
009
018
.009 | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201 | .384
.405
.465 | 189
174
180
176 | 030
009
018
.009 | | .925 | 31.4
62.8
94.2
125.7 | .065
.131
.196
.262 | •399
•436
•448
•474 | 181
167
170
170 | 0
.046
.077
.052 | .925 | 157.1
188.5
31.4 | •335
•402 | .506 | 171
167
186 | .009 | | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.256 | .473
.440
.436
.423 | 181
163
169
165 | 0
.078
.091
.097 | ,,,,,, | 62.8
94.2
125.7
157.1
188.5 | .131
.196
.261
.327
.392 | .451
.487
.521
.493
.509 | 173
180
175
172
172 | .004
.013
.013
.059
.043 | | •975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.250 | .611
.626
.623
.633 | 183
159
163
161 | .028
.138
.171
.154 | •95 | 31.4
62.8
94.2
125.7
157.1 | .064
.127
.191
.255 | .580
.593
.597
.611 | 186
164
168
165
163 | .021
.090
.103
.107 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.122
.183
.244 | .536
.529
.539
.550 | 180
164
168
165 | .004
.094
.107
.094 | -975 | 188.5
31.4
62.8
94.2 | .382
.062
.124
.186 | .588
.579
.599
.607 | 163
189
166
170 | .016
.072
.101 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | .462
.477
.496
.516 | 183
169
176
173 | 015
.031
.035
.043 | | 125.7
157.1
188.5 | .248
.310
.372 | .517
.597
.682 | 167
165
165 | .072
.129
.134 | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.223 | .431
.442
.450
.478 | 181
169
176
174 | 015
.022
.022
.011 | 1.00 | 31.4
62.8
94.2
125.7
157.1
188.5 | .061
.121
.182
.242
.303
.364 | .555
.567
.574
.564
.565
.620 | 182
165
170
168
165
166 | .012
.073
.095
.063
.116 | | | | | | | | 1.05 | 31.4
62.8
94.2
125.7
157.1
188.5 | .058
.116
.174
.232
.289
.347 | .517
.533
.543
.562
.577
.681 | 186
170
176
176
174
176 | 011
.030
.027
.004
.038 | | | | | | | | 1.10 | 31.4
62.8
94.2
125.7
157.1
188.5 | .055
.111
.167
.222
.278
.333 | .492
.501
.511
.523
.542
.641 | 185
170
177
175
175
176 | 015
.022
.033
.022
.026 | **:P** TABLE III.- MEASURED FLUTTER DERIVATIVES FOR 21-1/2-PERCENT-CHORD UNBALANCED CONTROL SURFACE; $\delta_{\rm O}$ = $\pm 1.08^{\rm O}$ | | | · · · · · · · · · · · · · · · · · · · | | | $\delta_{m} = 0^{\circ}$ | ; a = 0 | 0 | | | | | |-------|-------------------------------|---------------------------------------|----------------------------------|--------------------------|------------------------------|-------------|-------------------------------|-------------------------------|----------------------------------|--------------------------|------------------------------| | | | Plain c | ontrol | | | | Vor | tex gen | erators | | | | М | ω | k | ch8 | heta, deg | kc _h | М | ω | k | $ ^{c_{h_{\delta}}} $ | θ,
deg | kc _h | | 0.70 | 31.4
62.8
94.2
125.7 | 0.085
.170
.255
.340 | 1.252
.960
.455
.472 | 187
184
190
191 | -0.028
036
055
085 | 0.70 | 31.4
62.8
94.2
125.7 | 0.085
.169
.254
.339 | 0.530
.550
.524
.537 | 185
175
188
192 | -0.019
049
114
156 | | .80 | 31.4
62.8
94.2
125.7 | .074
.149
.223
.298 | .448
.424
.437
.474 | 191 | 0
045
085
130 | .80 | 31.4
62.8
94.2
125.7 | .075
.151
.226
.302 | •534
•547
•582
•574 | 185
176
189
192 | 086
064
116
168 | | .85 | 31.4
62.8
94.2
125.7 | .070
.140
.210
.280 | .461
.459
.483
.525 | 178
177
188
191 | 007
057
089
131 | . 85 | 31.4
62.8
94.2
125.7 | .071
.141
.212
.283 | .560
.565
.577
.630 | 185
175
187
191 | 097
066
118
174 | | .90 | 31.4
62.8
94.2
125.7 | .067
.133
.200
.266 | .468
.507
.561
.626 | 181
180
190
190 | 021
081
112
130 | .90 | 31.4
62.8
94.2
125.7 | .067
.134
.201
.268 | .570
.604
.682
.737 | 185
180
190
189 | 112
091
166
175 | | •925 | 31.4
62.8
94.2
125.7 | .065
.130
.195
.261 | .489
.553
.630
.658 | 182
181
189
184 | 049
110
118
083 | .925 | 31.4
62.8
94.2
125.7 | .065
.130
.196
.261 | .596
.678
.757
.826 | 188
180
188
184 | 121
133
158
136 | | •95 | 31.4
62.8
94.2
125.7 | .064
.127
.191
.254 | .685
.661
.646
.615 | 177
165
171
170 | .032
.052
.078
.067 | .95 | 31.4
62.8
94.2
125.7 | .063
.127
.190
.253 | .832
.828
.810
.771 | 184
165
169
168 | 020
.065
.100
.087 | | •975 | 31.4
62.8
94.2
125.7 | .062
.124
.186
.248 | .981
1.134
1.072
.992 | 171
153
155
151 | .162
.315
.381
.388 | •975 | 31.4
62.8
94.2
125.7 | .062
.123
.185
.247 | 1.502
1.414
1.217
1.119 | 169
150
152
148 | .352
.464
.473
.447 | | 1.00 | 31.4
62.8
94.2
125.7 | .060
.121
.181
.242 | 1.322
1.381
1.248
1.208 | 174
154
155
148 | .252
.426
.451
.600 | 1.00 | 31.4
62.8
94.2
125.7 | .060
.120
.180
.240 | 1.676
1.467
1.265
1.088 | 168
143
142
138 | .536
.691
.779
.733 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | 1.056
1.058
1.133
1.123 | 175
167
172
170 | .029
.028
.047 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | 1.226
1.282
1.278
1.273 | 176
166
170
170 | .062
.087
.101
.089 | | 1.095 | 31.4
62.8 | .056
.122 | 1.013 | 175
168 | .023
.017 | 1,10 | 31.4
62.8
94.2 | .056
.111
.167 | 1.177
1.246
1.198 | 175
166
171 | .073
.083
.061 | | 1.09 | 94.2
125.7 | .168
.224 | 1.078
1.052 | 173
172 | .040
.047 | | 125.7 | .223 | 1.201 | 169 | .062 | TABLE III.- MEASURED FLUTTER DERIVATIVES FOR 21-1/2-PERCENT-CHORD UNBALANCED CONTROL SURFACE; δ_O = $\pm 1.08^{\rm O}$ - Continued | | | | Si | ngle | wedges o | n contr | ol surf | ace | | | | |------|-------------------------------|-------------------------------|--------------------------------|--------------------------|-----------------------------|---------|-------------------------------|-------------------------------|----------------------------------|--------------------------|------------------------------| | | 8 | $m = 0^{\circ};$ | $\alpha = 0^{\circ}$ | 1 | | | δ_{m} | = 2°; | a = 0° | | | | М | 3 _ | k | ch8 | θ,
deg | kc _h | М | ω | k | ch8 | θ,
deg | kc _h å | | 0.80 | 31.4
62.8
94.2
125.7 | 0.076
.151
.227
.303 | 0.474
.524
.497
.517 | 180
178
194
218 | -0.026
079
151
337 | 0.80 | 31.4
62.8
94.2
125.7 | 0.076
.153
.230
.306 | 0.519
.521
.537
.551 | 183
180
191
194 | -0.033
078
153
204 | | .85 | 31.4
62.8
94.2
125.7 | .071
.142
.213
.284 | .485
.504
.542
.601 | 185
180
195
200 | 089
101
177
260 | .85 | 31.4
62.8
94.2
125.7 | .072
.143
.215
.287 | .523
.551
.575
.611 | 181
180
189
197 | 045
100
172
249 | | .90 | 31.4
62.8
94.2
125.7 | .067
.135
.203
.270 | .510
.559
.641
.737 |
188
183
199
199 | 110
140
254
300 | .90 | 31.4
62.8
94.2
125.7 | .068
.136
.203
.271 | .520
.573
.711
.833 | 182
188
196
196 | 081
176
258
273 | | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.197
.263 | .472
.557
.656
.740 | 183
189
198
194 | 149
210
262
241 | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.198
.264 | .537
.678
.796
.871 | 186
189
194
189 | 115
226
251
217 | | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.192
.256 | .511
.571
.635
.677 | 187
182
192
194 | 143
119
163
190 | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.193
.257 | •979
•961
•992
•928 | 174
166
170
169 | .038
.052
.038
.055 | | .975 | 31.4
62.8
94.2
125.7 | .062
.135
.187
.249 | .916
.928
.939
.927 | 189
169
174
172 | 106
0
.035
.074 | -975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.250 | .914
.825
.827
.803 | 172
162
167
166 | .089
.113
.126
.093 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.121
.182
.242 | .732
.832
1.033
1.037 | 338
275
263
244 | 411
625
793
778 | 1.00 | 31.4
62.8
94.2
125.7 | .061
.123
.184
.246 | .487
.557
.649
.698 | 278
259
255
249 | 225
356
468
514 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.174
.232 | 1.023
1.015
.975
.999 | 178
164
172
170 | 033
.054
.068
.069 | 1.05 | 31.4
62.8
94.2
125.7 | .058
.117
.175
.233 | 1.067
1.053
1.103
1.087 | 173
165
172
169 | .041
.049
.057
.065 | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.223 | 1.007
.960
1.012
.973 | 177
166
172
172 | 032
.052
.047
.046 | 1.10 | 31.4
62.8
94.2
125.7 | .056
.112
.168
.224 | 1.048
1.060
1.048
1.061 | 173
165
170
170 | .054
.047
.054
.042 | TABLE III.- MEASURED FLUTTER DERIVATIVES FOR 21-1/2-PERCENT-CHORD UNBALANCED CONTROL SURFACE; $\delta_{\rm O}$ = ±1.08° - Continued | | | | Double | wedge | s on win | g and c | ontrol | surface | | | | |------|-------------------------------|------------------------------|------------------------------|--------------------------|------------------------------|---------|-----------------------|----------------------|----------------------|-------------------|----------------------| | | δ | $m = 0^{\circ};$ | $\alpha = 0^{\circ}$ | | | | δ | m = 2°; | $a = 0_0$ | | | | М | ω | k | ch8 | θ , deg | kc _h | М | ú | k | ch8 | θ , deg | kc _h | | 0.80 | 31.4
62.8 | 0.076 | 0.384 | 184
182 | -0.050
065 | 0.80 | 125.7 | 0.308 | 0.442 | 207 | -0.224 | | | 94.2 | .227 | .404
.405 | 201
201 | 131
263 | .85 | 31.4
62.8 | .072 | .382
.394 | 182
186 | 037
114 | | .85 | 31.4
62.8 | .071
.142 | ·334
·356 | 189
198 | 062
132 | | 94.2
125.7 | .217
.289 | .422
.485 | 203
214 | 192
260 | | | 94.2
125.7 | .213
.284 | .388
.456 | 217
228 | 225
328 | .90 | 31.4
62.8
94.2 | .068
.137
.205 | .396
.490
.532 | 184
200
222 | 070
184
272 | | .90 | 31.4
62.8
94.2 | .068
.135
.203 | .296
.410
.541 | 246
232
256 | 114
250
474 | .925 | 125.7 | .274 | .646 | 221 | -,410
-,141 | | | 125.7 | .270 | .742 | 241 | 620 | .92) | 62.8 | .133
.200 | .462 | 228
237 | 249
401 | | .925 | 31.4
62.8
94.2 | .066 | .330
.405
.544 | 231
243
254 | 127
272
440 | .95 | 125.7 | .266 | .695 | 254
291 | 447
141 | | .95 | 125.7 | .263 | .683 | 241
336 | 532
134 | | 62.8
94.2
125.7 | .130
.194
.259 | .474
.570
.636 | 267
253
239 | 347
419
474 | | .3) | 62.8
94.2 | .128 | .482
.561 | 279
270 | 364
469 | .975 | 31.4 | .063 | .517 | 176 | 066 | | .975 | 125.7
31.4 | .062 | .629 | 258
336 | 560 | | 62.8
94.2
125.7 | .126
.189
.252 | .527
.591
.579 | 177
194
187 | 081
139
136 | | | 62.8
94.2
125.7 | .125
.187
.250 | .714
.716
.784 | 290
283
270 | 592
712
611 | 1.00 | 31.4
62.8 | .061
.123 | .654
.647 | 173
165 | .033 | | 1.00 | 31.4
62.8 | .061 | .499
.617 | 319
270 | 306
489 |] | 94.2
125.7 | .184 | .664 | 171
171 | .054
.027 | | | 94.2
125.7 | .183
.244 | .721
.810 | 266
251 | 619
652 | 1.05 | 31.4
62.8
94.2 | .058
.117
.175 | .916
.931
.938 | 171
163
169 | .065
.077
.065 | | 1.05 | 31.4
62.8
94.2 | .058
.116
.174 | .963
.966
.974 | 176
163
170 | .012
.077
.081 | 1.10 | 125.7 | .056 | .920 | 166 | .077 | | | 125.7
157.1
188.5 | .232
.290
.348 | .940
.940
.996 | 169
170
168 | .084 | 1.10 | 62.8
94.2
125.7 | .112 | .915
.924
.905 | 165
169
169 | .042
.061
.063 | | 1.10 | 31.4
62.8
94.2
125.7 | .055
.111
.166
.222 | .895
.926
.905
.910 | 182
165
172
171 | .031
.056
.068
.074 | | | | | | | | | 157.1
188.5 | .277
-333 | .910
.953 | 171
169 | .087
.086 | | | | | | | TABLE III.- MEASURED FLUTTER DERIVATIVES FOR 21-1/2-PERCENT-CHORD UNBALANCED CONTROL SURFACE; $\delta_{\rm O}$ = $\pm 1.08^{\rm O}$ - Concluded | Dou | Double wedges on control surface;
$\alpha = 0^{\circ}, \ \delta_{m} = 2^{\circ}$ | | | | | α | Upper re | ow - 5/8
m = 00 | 8 semis
plain | | ol | |------|---|-------------------------------|-------------------------------|--------------------------|------------------------------|-------------|-------------------------------|-------------------------------|----------------------------------|--------------------------|------------------------------| | м | ω | k | $ c_{h_{\delta}} $ | θ,
deg | kc _h | М | ω | k | $ c_{h_{\delta}} $ | θ,
deg | kc _h | | 0.80 | 31.4
62.8
94.2
125.7 | 0.075
.151
.226
.302 | 0.433
.455
.469
.512 | 185
180
197
206 | -0.059
102
179
256 | 0.80 | 31.4
62.8
94.2
125.7 | 0.074
.149
.223
.298 | 0.563
.590
.545
.573 | 184
177
186
186 | -0.017
062
093
123 | | .85 | 31.4
62.8
94.2
125.7 | .071
.143
.214
.285 | .408
.435
.474
.551 | 189
185
204
212 | 079
126
221
318 | . 85 | 31.4
62.8
94.2
125.7 | .070
.140
.210
.280 | .584
.618
.641
.684 | 180
176
185
186 | 045
073
085
129 | | .90 | 31.4
62.8
94.2
125.7 | .068
.136
.203
.271 | .386
.446
.570
.747 | 201
218
234
233 | 142
282
461
556 | •90 | 31.4
62.8
94.2
125.7 | .067
.133
.200
.266 | .594
.586
.605
.631 | 179
177
186
183 | 036
072
070
106 | | .925 | 31.4
62.8
94.2
125.7 | .066
.132
.198
.264 | .441
.531
.693
.852 | 264
222
225
219 | 179
355
470
466 | .925 | 31.4
62.8
94.2
125.7 | .065
.130
.195
.261 | •577
•694
•757
•799 | 180
177
184
176 | 037
062
084
058 | | •95 | 31.4
62.8
94.2
125.7 | .064
.128
.193
.257 | .452
.646
.801
.886 | 290
248
237
227 | 317
536
641
593 | •95 | 31.4
62.8
94.2
125.7 | .064
.127
.191
.254 | .806
.795
.789
.736 | 175
166
169
164 | .027
.061
.082
.084 | | •975 | 31.4
62.8
94.2
125.7 | .062
.125
.187
.250 | .459
.516
.647
.663 | 264
237
234
237 | 138
306
451
488 | -975 | 31.4
62.8
94.2
125.7 | .062
.124
.186
.248 | 1.252
1.220
1.131
1.024 | 170
158
157
155 | .137
.306
.319
.341 | | 1.00 | 31.4
62.8
94.2
125.7 | .061
.121
.182
.243 | .815
.799
.765
.751 | 176
165
169
160 | .033
.067
.100 | 1.00 | 31.4
62.8
94.2
125.7 | .060
.121
.181
.242 | 1.615
1.564
1.436
1.407 | 170
164
160
154 | .136
.302
.394
.472 | | 1.05 | 31.4
62.8
94.2
125.7 | .058
.116
.175
.233 | .988
.990
1.028
.974 | 178
166
170
169 | .032
.072
.078
.085 | | | | | | | | 1.10 | 31.4
62.8
94.2
125.7 | .056
.111
.167
.223 | •939
•958
•964
•957 | 176
164
170
169 | 019
.063
.075
.068 | | | | | | | Figure 1. - Sectional sketch of nozzle and test section of Ames 14-foot transonic wind tunnel. Figure 2. - Model mounted in the test section. A-22547 Figure 3.- Model plan form. Wing tip acceleration in gravitational units, g Figure 4.- Frequency response due to sinusoidal forced vibration at the wing tip. P Figure 5. - Control-surface sections. Figure 7.- Front and rear views of the splitter-plate control surface, $c_{\rm s}/c_{\rm t}=0.6$. (a) Front view. Figure 8.- Rear view of wedges on the 30-percent control surface. Figure 9.- Schematic drawing of the mechanical details of the controlsurface drive system. Figure 10.- Block diagram of hydraulic servo-valve drive system. (a) Instrumentation for summing and recording pressure cell outputs. Figure 11.- Block diagram of instrumentation. • Figure 11.- Concluded. P (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 12.- Effect of reduced frequency for 30-percent-chord control surface; c_b/c_f = 0.25, δ_m = 0°, α = 0°. (b) Aerodynamic damping component as a function of Mach number. Figure 12.- Concluded. Figure 13.- Location of shock wave as a function of Mach number for the 30-percent-chord control surface; $c_b/c_f = 0.25$,
$\alpha = 0^{\circ}$, $\delta_m = 0^{\circ}$. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 14.- Effect of external aerodynamic balance; δ_m = 0°, α = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 14.- Concluded. 100 .6 .7 (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. .9 Mach number, M .8 1.0 1.1 1.2 Figure 15.- Effect of leading-edge seal; c_b/c_f = 0.10, δ_m = 0°, α = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 15.- Concluded. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 16.- Effect of vortex generators on wing; $\delta_m = 0^\circ$, $\alpha = 0^\circ$, k = 0.2. P (b) Aerodynamic damping component as a function of Mach number. Figure 16.- Concluded. 160 140 120 100 .6 Unstable .7 1.1 1.2 1.0 Mach number, M (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. .9 .8 Figure 17.- Effect of variation of ratio of splitter-plate chord to total-control chord; $\delta_m = 0^\circ$, $\alpha = 0^\circ$, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 17.- Concluded. θ 160 140 120 100 .6 Unstable .7 1.1 1.2 1.0 (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. .9 Mach number, M 8. Figure 18.- Effect of mean angle of control-surface deflection; c_b/c_f = 0.40, c_s/c_t = 0.60, α = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 18.- Concluded. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 19.- Effect of wing angle of attack; c_b/c_f = 0.40, c_s/c_t = 0.60, δ_m = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 19.- Concluded. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 20.- Effect of wedges on the 30-percent-chord control surface; c_b/c_f = 0.40, δ_m = 0°, α = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 20.- Concluded. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 21.- Effect of wedges on 21.5-percent-chord control surface; δ_m = 0°, α = 0°, k = 0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 21.- Concluded. (a) Resultant aerodynamic hinge moment and phase angle as functions of Mach number. Figure 22.- Effect of mean angle of control-surface deflection for the 21.5-percent-chord control surface with double wedges; $\alpha=0^{\circ}$, k=0.2. (b) Aerodynamic damping component as a function of Mach number. Figure 22.- Concluded.